

Best Practices to Beat the Cardio-Renal-Metabolic Triad

Stephen Brunton, MD, FAAFP, CDCES
Executive Director
Primary Care Metabolic Group

Learning Objectives

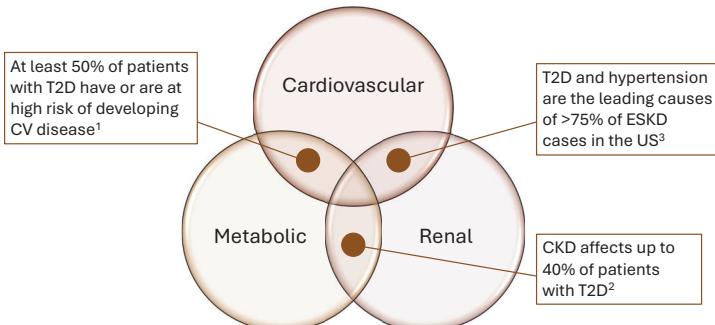
Participants in this presentation should be able to...

Apply strategies for diagnosing T2D, HF, and CKD early in the disease course to slow progression and reduce adverse outcomes.

Incorporate evidence-based, guideline-recommended therapeutic agents for treating CRM conditions across the spectrum of disease.

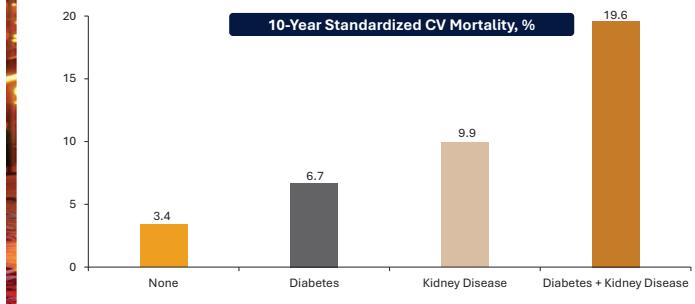
Engage the multidisciplinary health care team to promote optimal care of CRM diseases across care settings.

Introduction to Cardio-Renal-Metabolic (CRM) Diseases


T2D, CVD/HF, and CKD

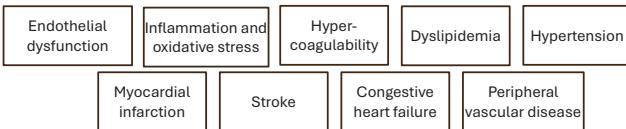
- Among the most disruptive public health issues of the century
- Strong interconnection between diseases affecting the three systems (metabolic, cardiovascular, renal)
- Coexistence of all three referred to as **"cardio-renal-metabolic"** diseases

T2D, type 2 diabetes; CVD, cardiovascular disease; CKD, chronic kidney disease; HF, heart failure


Marassi M and Fadini GP. *Cardiovasc Diabetol*. 2023;22:195.

Coexistence of Cardio-Renal-Metabolic Systems

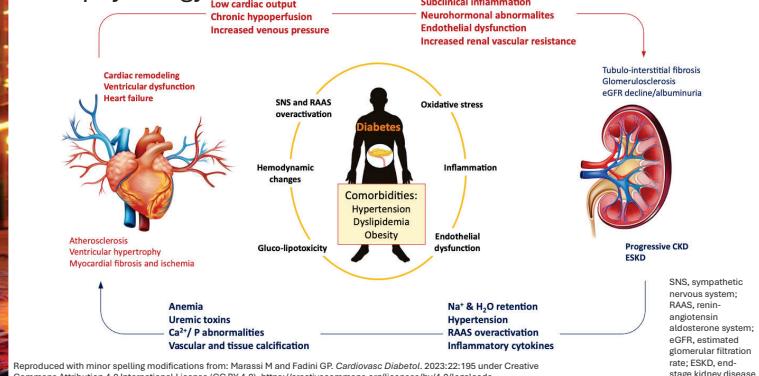
1. Wong K, et al. *J Diabetes Complications*. 2012;26:169-174. 2. Feng X, et al. *Kidney Med*. 2022;4(1):100385. 3. Burrows NR, et al. *MMWR Morb Mortal Wkly Rep*. 2022;71(11):412-415.


CV Mortality in T2D is Magnified by CKD

Akbarian M, et al. *J Am Soc Nephrol*. 2013;24:302-308.

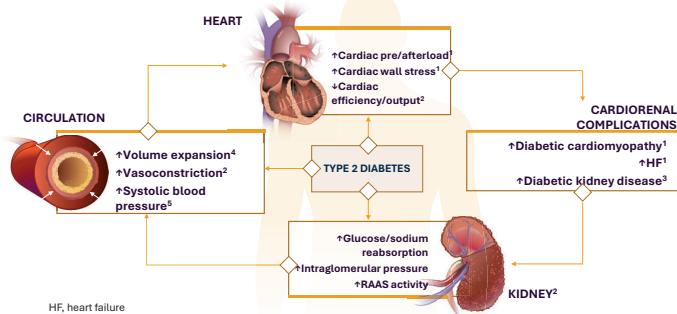
CKD Promotes the Pathogenesis of CVD in Diabetes

Patients with CKD have a very high risk of CV comorbidities¹⁻³



The risk of CV events in DKD increases as kidney function declines¹

CV, cardiovascular; DKD, diabetes kidney disease


1. Sasso et al. *Nephrol Dial Transplant*. 2012;27:2269-2274; 2. Palsson, Patel. *Adv Chronic Kidney Dis*. 2014;21(3): 273-280. 3. Tutte et al. *Diabetes Care*. 2014;37:2864-2883.

Pathophysiology

Reproduced with minor spelling modifications from: Marassi M and Fadini GP. *Cardiovasc Diabetol*. 2023;22:195 under Creative Commons Attribution 4.0 International License (CC BY 4.0), <https://creativecommons.org/licenses/by/4.0/legalcode>

Bidirectional, Pathophysiological Interaction Between Kidney and Heart in T2D: Potential for Multi-organ benefit

1. Muralidaran Y, et al. *J Diabetes Metab*. 2015; 6:10. 2. Sattar N, et al. *Diabetologia*. 2016;59(7):1333-1339. 3. Wanner C. *Am J Cardiol*. 2017;120(15):S59-S67. 4. Sattar N, et al. *Circulation*. 2018;138:7-9. 5. Mazidi M, et al. *J Am Heart Assoc*. 2017;6(6):e004007.

Cardiorenal Syndrome (CRS)

A “pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other”

- Includes CKD and HF, among other conditions

- 5 types of CRS identified

- Biomarkers can assist with early diagnosis of CRS and timely therapeutic intervention

- Cardiac biomarkers, such as BNP
- Kidney biomarkers, such as SCr, cystatin C, and albuminuria

BNP, B-type natriuretic peptide; SCr, serum creatinine

Ronco C, et al. *J Am Coll Cardiol*. 2008;52(19):1527-1539; Rangaswami J, et al. *Circulation*. 2019;139(16):e840-e878.

The 5 Subtypes of CRS

Type	Nomenclature	Description	Examples
Type 1 CRS	Acute CRS	HF resulting in AKI	<ul style="list-style-type: none"> ACS leading to cardiogenic shock and AKI Acute HF that leads to AKI
Type 2 CRS	Chronic CRS	Chronic HF resulting in CKD	<ul style="list-style-type: none"> Chronic HF
Type 3 CRS	Acute renocardiac syndrome	AKI resulting in acute HF	<ul style="list-style-type: none"> HF in the setting of AKI from volume overload Inflammatory surge Metabolic disturbances in uremia
Type 4 CRS	Chronic renocardiac syndrome	CKD resulting in chronic HF	<ul style="list-style-type: none"> LVH and HF from CKD-associated cardiomyopathy
Type 5 CRS	Secondary CRS	Systemic process resulting in HF and kidney failure	<ul style="list-style-type: none"> Amyloidosis Sepsis Cirrhosis

AKI, acute kidney injury; ACS, acute coronary syndrome; LVH, left ventricular hypertrophy

Ronco C, et al. *J Am Coll Cardiol*. 2008;52(19):1527-1539; Rangaswami J, et al. *Circulation*. 2019;139(16):e840-e878.

The Role of the Health Care Team in CRM Diseases¹⁻³

- Health care team management of CRM diseases is recommended
- CKD is underdiagnosed, and many clinicians are not routinely screening patients with diabetes or hypertension for elevated UACR
 - Early screening and diagnosis leads to optimized kidney and CV care
- Primary care clinicians (PCCs) are often the first source for care
 - More than 60% of patients with CKD seen in primary care
 - PCCs can coordinate care to ensure coordinated, multidisciplinary management of CRM diseases

UACR, urine albumin-to-creatinine ratio

1. Rangaswami J, et al. *Circulation*. 2020;142(17):e265-e268. 2. Kushner PR, et al. *Clin Diabetes*. 2022;40(4):401-412. 3. Altego D, et al. *Diabetes Care*. 2021;44:2025-2032; Shin J, et al. *Hyperension*. 2021;78:1042-1052.

Role of the PCC

- Facilitate early screening and diagnosis
- Implement interventions early when indicated to prevent CV morbidity/mortality and slow CKD progression
 - Lifestyle interventions
 - Optimized risk factor management
 - Initiation of agents with evidence of cardiovascular and kidney benefit
- Refer to specialists as appropriate
- Coordinate multidisciplinary care

Shubrook JH, et al. *Postgrad Med*. 2022;134(4):376-387; Kushner PR, et al. *Clin Diabetes*. 2022; 40(4):401-412.

Patient Case #1

58-year-old woman presents for a routine primary care visit follow up:

- History of T2D, HF, CKD, and hypertension
- Has been taking her medications for “years”
- BMI 31.2 kg/m²
- Blood pressure today 156/80 mmHg
- HbA1c 8.5%
- eGFR 46 mg/mL/1.73 m², UACR 90 mg/g

Current Relevant Medications

- Metformin 1,000 mg twice daily
- Glipizide 10 mg twice daily
- Lisinopril 40 mg once daily
- Bisoprolol 5 mg once daily

What are the potential health risks for this patient, and what opportunities are there to improve disease management?

BMI, body mass index; HbA1c, glycated hemoglobin

Early Identification and Diagnosis of CRM Diseases

Screening for CKD in Diabetes

	Adults	Children/Adolescents
Who?	T1D: Duration \geq 5 years T2D: All	At puberty or age >10 years, whichever is earlier, once the child has had diabetes \geq 5 years
How?	Urinary albumin (eg, spot UACR) and eGFR	Urinary albumin (morning preferred) with spot UACR
When?	At least once a year	At least once a year

Note: The ADA (American Diabetes Association) recommends that patients with established T2D and CKD, UACR and eGFR should be monitored 1-4 times per year depending on the stage of disease.

American Diabetes Association Professional Practice Committee. *Diabetes Care*. 2022;45(Suppl_1):S239-S251.

Screening for CKD in patients with diabetes

Who and when to screen?

T1D Yearly starting 5 years after diagnosis

T2D Yearly starting at diagnosis

How to screen?

Spot urine ACR
and
eGFR

ACR, albumin-to-creatinine ratio

What defines CKD diagnosis?

Persistent urine ACR \geq 30 mg/g and/or
Persistent eGFR $<$ 60 mL/min/1.73 m² and/or
Other evidence of kidney damage

What to do with a positive result?

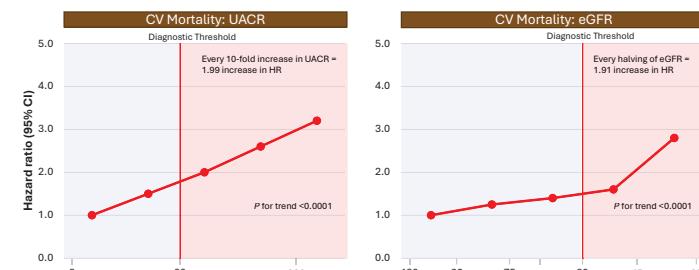
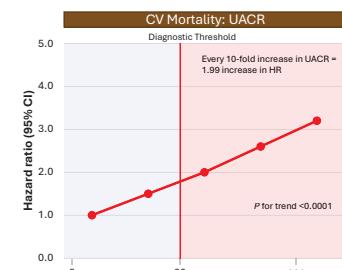
Repeat and confirm:

- Evaluate possible temporary or spurious causes
- Consider using cystatin C and creatinine to more precisely estimate GFR
- Only persistent abnormalities define CKD

Initiate evidence-based treatments

de Boer IH, et al. *Diabetes Care*. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

de Boer IH, et al. *Diabetes Care*. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.



The race-neutral eGFR Calculator

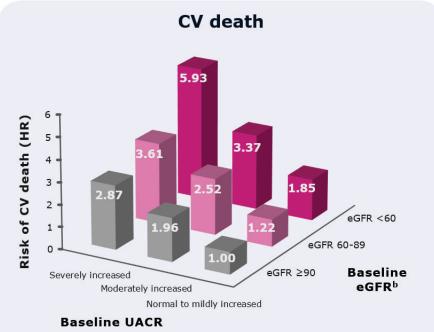
- February 28, 2022: All LabCorp moves to new calculator
 - Approx 51 million tests
- April 1, 2022: All VA labs move to new calculator
 - Largest integrated health system in the US
- July 11, 2022: All Quest labs move to new calculator
 - Approx 60 million tests
- July 2022: All transplant will be listed using the new calculator
- August 2022: All large universities changed (Mayo, Stanford, Univ of AL, Harvard, Yale, etc)
- Fall 2022: EPIC moves to new calculator
- By the end of 2022, 80% of all labs were using the new race-neutral calculator**

eGFR Test Change: Removal of Race from the Calculation | American Kidney Fund. www.kidneyfund.org. November 23, 2021. Accessed March 17, 2025. <https://www.kidneyfund.org/all-about-kidneys/tests/egfr/egfr-test-change-removal-race-calculation>

Why both UACR and eGFR?

Both eGFR and UACR independently predict CVD mortality
CVD mortality increases with severity of renal impairment

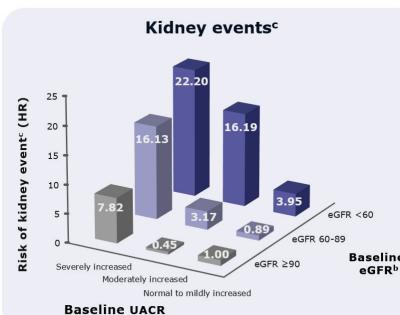
Ninomiya T, et al. *J Am Soc Nephrol*. 2009;20(8):1813-1821. Figure reprinted with permission from Ninomiya et al. Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes, *Journal of the American Society of Nephrology*, 20(8):1813-1821, https://journals.lww.com/jasn/fulltext/2009/08000/albuminuria_and_kidney_function_independently.25.aspx


Which of the following is true about screening for CKD in patients with diabetes?

- Cystatin C and creatinine testing are preferred for initial CKD screening
- Only checking eGFR is recommended since it independently predicts CVD mortality
- Only checking UACR is recommended since it independently predicts CVD mortality
- Checking eGFR and UACR is recommended since both independently predict CVD mortality

Why both UACR and eGFR?

Having both abnormal UACR and eGFR compounds the risk of CV death and kidney events^a


^aAverage time to follow-up for risk assessment was 4.3 years. ^beGFR in mL/min/1.73 m².

Ninomiya T, et al. *J Am Soc Nephrol*. 2009;20(8):1813-1821. Figure reprinted with permission from Ninomiya et al. Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes, *Journal of the American Society of Nephrology*, 20(8):1813-1821, https://journals.lww.com/jasn/fulltext/2009/08000/albuminuria_and_kidney_function_independently.25.aspx

Why both UACR and eGFR?

Having both abnormal UACR and eGFR compounds the risk of CV death and kidney events^a

^aAverage time to follow-up for risk assessment was 4.3 years. ^beGFR in mL/min/1.73 m². ^cA kidney event is defined as death as a result of kidney disease, requirement for dialysis or transplantation, or doubling of serum creatinine to >2.26 mg/dL.

Ninomiya T, et al. *J Am Soc Nephrol*. 2009;20(8):1813-1821. Figure reprinted with permission from Ninomiya et al. Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes, *Journal of the American Society of Nephrology*, 20(8):1813-1821, https://journals.lww.com/jasn/fulltext/2009/08000/albuminuria_and_kidney_function_independently.25.aspx

Definition and Staging of CKD

Risk of CKD progression, frequency of visits, and referral to nephrologist according to GFR and albuminuria shown.

Numbers in boxes are a guide to how many times per year the patient should be seen.

		Albuminuria categories		
		Description and range		
		A1	A2	A3
CKD is classified based on:				
• Cause (C)		Normal to mildly increased	Moderately increased	Severely increased
• Albuminuria (A)		<30 mg/g	<3 mg/mmol	≥300 mg/g
		30-299 mg/g	3-29 mg/mmol	≥30 mg/mmol
G1	Normal or high	≥90	Screen 1	Treat 1
	Mildly decreased	60-89	Screen 1	Treat 1
G2	Moderately to severely decreased	45-59	Treat 1	Treat and refer 3
G3a	Moderately to severely decreased	30-44	Treat 2	Treat and refer 3
G3b	Moderately to severely decreased	15-29	Treat and refer 3	Treat and refer 3
G4	Severely decreased	15-29	Treat and refer 3	Treat and refer 4+
G5	Kidney failure	<15	Treat and refer 4+	Treat and refer 4+

Low risk (if no other markers of kidney disease, no CKD) High risk

Moderately increased risk Very high risk

de Boer IH, et al. *Diabetes Care*. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

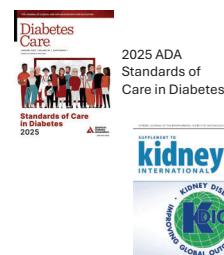
Patient Case #2

42-year-old man with newly-diagnosed T2D presents to the primary care clinic for a diabetes follow-up visit

- History of hypothyroidism, T2D
- BMI 27.5 kg/m²

Current Relevant Medications

Metformin 1,000 mg twice daily
Insulin glargine 15 units daily
Levothyroxine 50 mcg daily


When and how should this patient be screened for CVD/HF and CKD?

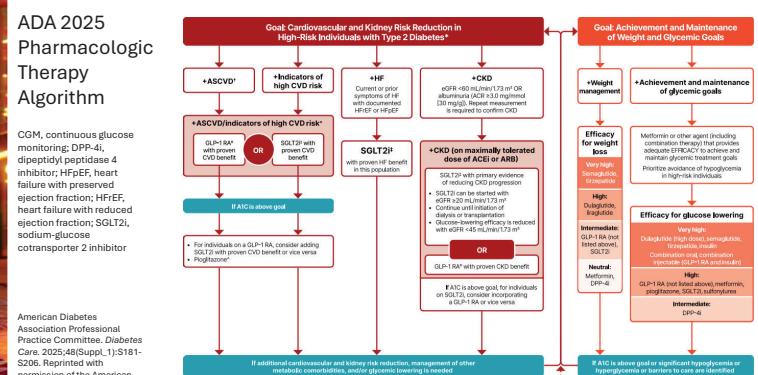
Guideline-Directed Management of CRM Diseases

Guideline Recommendations

Early screening, diagnosis, and comprehensive, coordinated care optimize outcomes in T2D, CVD/HF, and CKD

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

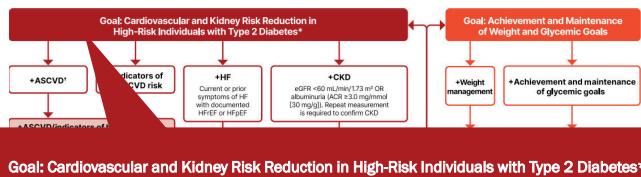
2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines


2020 AHA Scientific Statement

ADA 2025

ADA 2025 Pharmacologic Therapy Algorithm

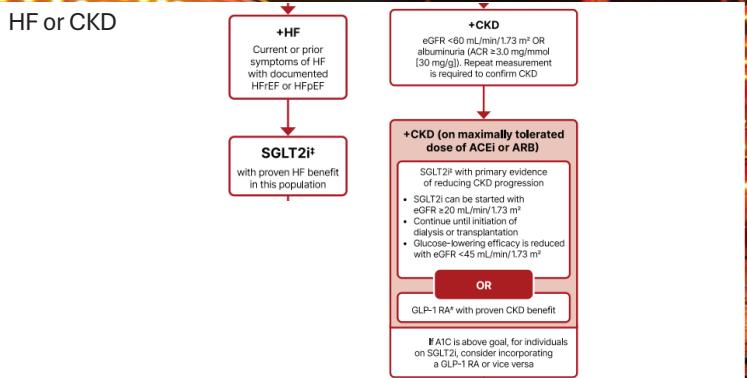
CGM, continuous glucose monitoring; DPP-4i, dipeptidyl peptidase 4 inhibitor; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; SGLT2i, sodium-glucose cotransporter 2 inhibitor


American Diabetes Association Professional Practice Committee. *Diabetes Care*. 2025;48(Suppl. 1):S181-S206. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2025.

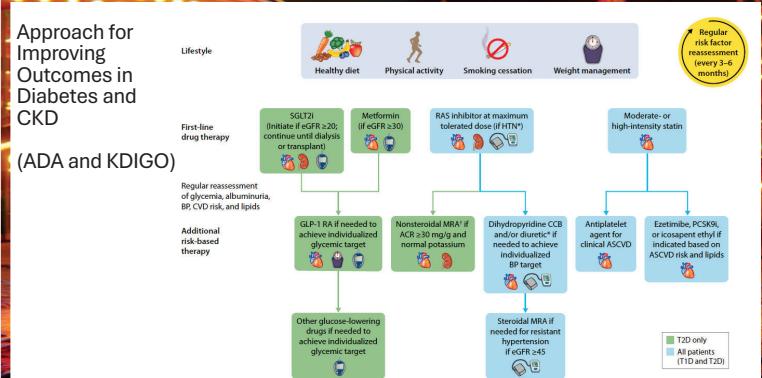
ACC, American College of Cardiology; AHA, American Heart Association; HFSA, Heart Failure Society of America; KDIGO, Kidney Disease: Improving Global Outcomes

Use of Glucose-Lowering Medications in the Management of T2D

High-risk or established ASCVD

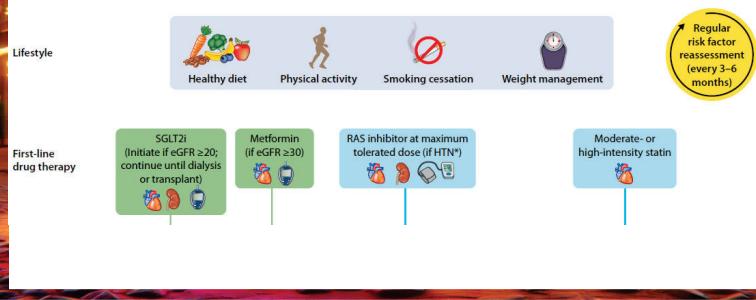

*In people with HF, CKD, established CVD or multiple risk factors for CVD, the decision to use a GLP-1 RA or SGLT2i with proven benefit should be made irrespective of background use of metformin or HbA1c

HbA1c, glycated hemoglobin

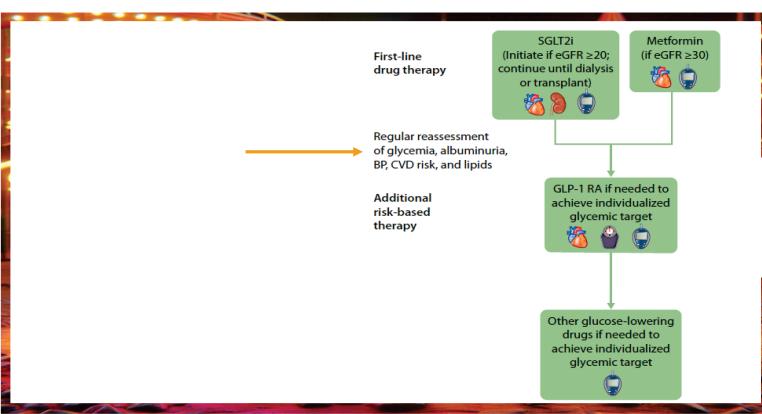

American Diabetes Association Professional Practice Committee. *Diabetes Care*. 2025;48(Suppl. 1):S181-S206. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2025.

CVOTs, cardiovascular outcomes trials

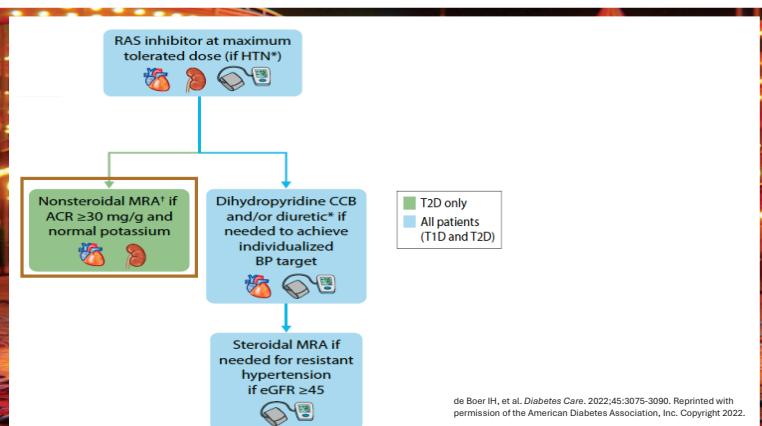
American Diabetes Association Professional Practice Committee. *Diabetes Care*. 2025;48(Suppl. 1):S181-S206. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2025.

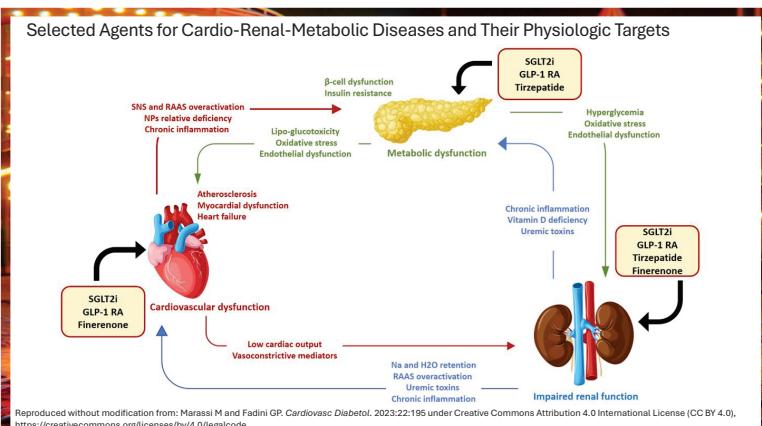


American Diabetes Association Professional Practice Committee. Diabetes Care. 2025;48(Suppl_1):S181-S206. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2025.



de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.


Approach for Improving Outcomes in Diabetes and CKD


de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

de Boer IH, et al. Diabetes Care. 2022;45:3075-3090. Reprinted with permission of the American Diabetes Association, Inc. Copyright 2022.

Reproduced without modification from: Marassi M and Fadini GP. Cardiovasc Diabetol. 2023;22:195 under Creative Commons Attribution 4.0 International License (CC BY 4.0). <https://creativecommons.org/licenses/by/4.0/legalcode>

SGLT2 Inhibitors: Kidney Outcome Trial Results

Agent	Canagliflozin	Dapagliflozin	Empagliflozin
Study	CREDENCE (n = 4,401)	DAPA-CKD (n = 4,304; 2,906 w/diabetes)	EMPA-KIDNEY (n = 6,609; 3,040 w/diabetes)
Median follow-up (years)	2.6	2.4	2.0
Key kidney-related enrollment criteria	eGFR 30 to < 90 UACR: > 300 to 5000 mg/g	eGFR 25 to 75 UACR: 200 to 5000 mg/g	eGFR 20 to 45 (any UACR) eGFR 45 to 90 (UACR > 200 mg/g)
Mean baseline eGFR	56 mL/min/1.73 m ²	43 mL/min/1.73 m ²	37 mL/min/1.73 m ²
Median Baseline UACR	927 mg/g	949 mg/g	329 mg/g
Kidney outcome(s)	Primary Outcome <ul style="list-style-type: none">ESKD (dialysis, transplantation, or sustained eGFR < 15 mL/min/1.73m²), doubling of SCR, or death from renal causes	Primary Outcome <ul style="list-style-type: none">≥ 50% decrease in eGFR, ESKD, or death from renal or cardiovascular causes	Primary Outcome <ul style="list-style-type: none">≥ 40% decrease in eGFR, decrease in eGFR to <10 mL/min/1.73 m², ESKD, or death from renal causes
	HR: 0.70 (0.59-0.82)	HR: 0.61 (0.51-0.72)	HR: 0.72 (0.64-0.82)

Perkovic V, et al. *N Engl J Med*. 2019;380:2295-2306; Heerspink HJL, et al. *N Engl J Med*. 2020;383:1436-1446; The EMPA-KIDNEY Collaborative Group. *N Engl J Med*. 2023;388:117-127.

SGLT2 Inhibitors: HF Trial Results

Agent	Dapagliflozin	Dapagliflozin	Empagliflozin	Empagliflozin	Sotagliflozin
Study	DAPA-HF (n = 4,744)	DELIVER (n = 6,263)	EMPEROR-Reduced (n = 3,730)	EMPEROR-Preserved (n = 5,988)	SOLOIST-WHF (n = 1,222)
Median follow-up (years)	1.5	2.3	1.33	2.2	0.75*
Patients	NYHA class II, III, or IV HF and EF ≤40%	NYHA class II, III, or IV HF and EF ≤40%	NYHA class II, III, or IV HF and EF ≤40%	NYHA class II, III, or IV HF and EF >40%	T2D, recently hospitalized for worsening HF
HF outcomes	Composite of worsening heart failure or CV death HR: 0.74 (0.65-0.85)	Composite of worsening heart failure or CV death HR: 0.82 (0.73-0.92)	Composite of hospitalization for heart failure or CV death HR: 0.75 (0.65-0.86)	Composite of hospitalization for heart failure or CV death HR: 0.79 (0.69-0.90)	Composite of hospitalizations for HF and CV death HR: 0.67 (0.52-0.85)

NYHA, New York Heart Association; EF, ejection fraction

*Trial ended early due to lack of funding

SGLT2 Inhibitors: Expanded Indications

Medication	Expanded Indications
Canagliflozin	...to reduce the risk of MACE* in adults with T2D and established CVD ...to reduce the risk of ESKD, doubling of serum creatinine, CV death, and hospitalization for HF in adults with T2D and diabetic nephropathy with albuminuria
Dapagliflozin	...to reduce the risk of hospitalization for HF in adults with T2D and established CVD or multiple CV risk factors ...to reduce the risk of CV death and hospitalization for HF, and urgent HF visit in adults with heart failure ...to reduce the risk of sustained eGFR decline, ESKD, CV death, and hospitalization for HF in adults with CKD at risk of progression
Empagliflozin	...to reduce the risk of CV death and hospitalization for HF in adults with HF ...to reduce the risk of CV death in adults with T2D and established CVD
Sotagliflozin	...to reduce the risk of CV death, hospitalization for HF, and urgent HF visit in adults with HF or T2D with CKD and other CV risk factors

*Composite of CV death, nonfatal MI, nonfatal stroke

Invokana [Package Insert], Updated December 2024. Accessed March 17, 2025. Farxiga [Package Insert], Updated October 2024. Accessed March 17, 2025. Jardiance [Package Insert], Updated September 2023. Accessed March 17, 2025. Inpiwa [Package Insert], Updated January 2024. Accessed March 17, 2025.

Certain agents from which of the following drug classes have FDA approval for indications of T2D, HF (regardless of ejection fraction), and CKD (with or without diabetes)?

- A. ACE inhibitors
- B. SGLT2 inhibitors**
- C. GLP-1 receptor agonists
- D. Nonsteroidal MRAs

SGLT2 Inhibitors and AKI Hospitalization

- SGLT-2 inhibitors often withheld during AKI among patients hospitalized with acute HF
- Retrospective study of 3305 patients
 - 356 patients received SGLT-2 inhibitor following AKI diagnosis
 - **Rate of renal recovery not significantly different** between those exposed and unexposed to SGLT-2 inhibitors following AKI (HR 0.94, 95% CI 0.79-1.11, P=0.46)
 - SGLT-2 inhibitor exposure associated with **lower risk of 30-day mortality** (HR 0.45, 95% CI 0.23-0.87, P=0.02)

Conclusion: in adults with hospitalized with AKI and acute HF, exposure to SGLT-2 inhibitors leads to decreased mortality and no delay in recovery of kidney function

GLP-1 RAs and Kidney Benefits in Patients Without T2D

SELECT trial analysis

- Long-term kidney outcomes in patients with obesity/overweight and cardiovascular disease who did not have diabetes
- Kidney composite endpoint:
 - Death from kidney disease, initiation of chronic kidney replacement therapy, onset of persistent eGFR < 15 mL/min/1.73 m², persistent ≥50% reduction in eGFR or onset of persistent macroalbuminuria
- Semaglutide 2.4 mg compared to placebo
 - 22% reduction in the kidney composite endpoint
 - 1.8% with semaglutide, 2.2% with placebo, P = 0.02

Treatment for Cardiorenal Syndrome (CRS)

Treatment Strategy	Comments
Diuretics	Cornerstone of CRS management (though not supported by data from large clinical trials)
Ultrafiltration	Allows decongestion without use of loop diuretics
ACE inhibitors/ARBs/angiotensin- neprilysin inhibitor	Primary blood pressure-lowering agents
Aldosterone receptor antagonists	Improve RAAS suppression, but caution with risk for hyperkalemia; nonsteroidal MRAs (finnerenone) have lower risk of hyperkalemia
Evidence-based beta blockers	Improve NYHA class, LVEF, and HF symptoms, and reduce hospitalizations
SGLT-2 inhibitors	SGLT-2 inhibitors indicated for HF (empagliflozin, dapagliflozin, canagliflozin, sotagliflozin) or CKD (dapagliflozin, canagliflozin; empagliflozin granted FastTrack designation by FDA)
Cardiac device therapy	Subcutaneous implantable cardioverter-defibrillators (ICDs), cardiac resynchronization therapy (CRT) are options for certain patients

Rangaswami J, et al. *Circulation*. 2019;139(16):e840–e878.

LVEF, left ventricular ejection fraction; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; MRAs

Combined SGLT2 Inhibitor and MRA Benefit

Joint analysis of randomized trials (CREDENCE, FIDELIO-DKD, and DAPA-CKD)

Outcome	Combination Treatment Events/Patients	Conventional Treatment Events/Patients	Hazard Ratio (95% CI)
Doubling of SCr, ESKD, or death due to kidney failure	405/5035	550/5040	0.50 (0.44–0.57)
ESKD	324/5035	400/5040	0.59 (0.51–0.69)
All-cause mortality	387/5035	445/5040	0.75 (0.65–0.86)

- Patients had T2D and CKD
- Conventional Treatment: ACE inhibitor or ARB
- Combination treatment: SGLT-2 inhibitor and nonsteroidal MRA

Estimated event-free survival from composite kidney outcome incremental gain was 6.7 years with combination treatment

Heerspink HJL, et al. *Diabetes Obes Metab*. 2023;25(11):3327–3336.

Utilization of Therapies for Cardio-Renal-Metabolic Diseases

There is low utilization of therapies that reduce CKD and CV risk¹

Agent(s)	Implementation Rate
ACE inhibitors/ARBs	25-40% ^{2,3}
SGLT-2 inhibitors	13% ⁴
Nonsteroidal MRA	Not yet known

Access to care and implementation of evidence-based therapies can save millions of lives by mitigating kidney failure, CV events, and premature death⁵

1. Tuttle KR, et al. *Clin J Am Soc Nephrol*. 2022;17:1092–1103. 2. Tuttle KR, et al. *JAMA Netw Open*. 2019;2:e1918169. 3. Murphy DP, et al. *J Am Soc Nephrol*. 2019;30:1314–1321. 4. Tuttle KR, et al. *Lancet Diabetes Endocrinol*. 2018;6:605–617. 5. Burrows NR, et al. *MMWR Morb Mortal Wkly Rep*. 2022;71:412–415.

Overcoming Barriers to Use of Evidence-Based Therapies

Barriers in Primary Care	Potential Solutions
Lack of clinician awareness and knowledge of cardiometabolic conditions	<ul style="list-style-type: none"> • Concise and consistent practice guidelines
Complex patient characteristics	<ul style="list-style-type: none"> • Actionable and patient-centered recommendations
Lack of clinician time and resources	<ul style="list-style-type: none"> • Automated decision support tools integrated into electronic health records
Inadequate collaboration with and access to specialists	<ul style="list-style-type: none"> • Improved team-based care
Lack of clear parameters for specialist referral and difficult referral processes	

Nee R, et al. *Nephrol Dial Transplant*. 2023;38(3):532–541.

Patient Case #2 (continued 2 years later)

42-year-old man with a T2D, hyperthyroidism, CKD, and sudden weight gain

- Blood pressure 150/92 mmHg
- LVEF 45%
- LVH, grade 1 diastolic dysfunction
- NT-proBNP 2,789 pg/mL
- eGFR 52 mL/min/1.73 m²
- UACR 110 mg/g
- A1C 7.5%
- Normal complete blood count, electrolytes, and TSH
- BMI 35.5 kg/m²

Current Relevant Medications

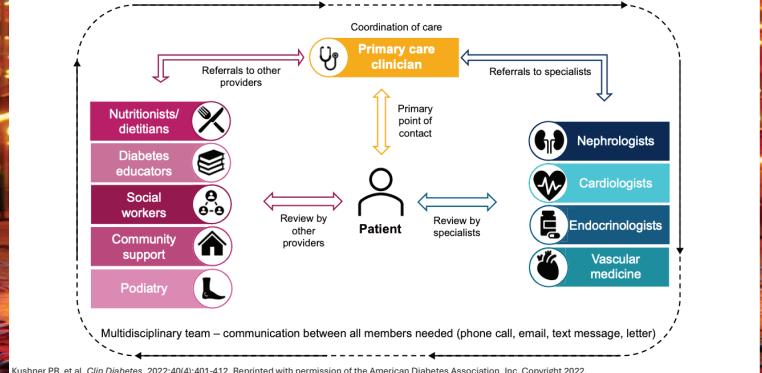
- Metformin 1,000 mg twice daily
- Insulin glargine 25 units daily
- Levothyroxine 50 mcg daily
- Valsartan 320 mg daily

How should this patient's conditions be managed? How can treatment be optimized to reduce CV risk?

Multidisciplinary Care for CRM Diseases

Need for Multidisciplinary Care

- Multidisciplinary approach for CRM diseases is recommended¹
- Patients often have access to specialized care only at a late stage in the disease trajectory²
- PCCs are uniquely positioned to facilitate multidisciplinary management of cardio-renal metabolic diseases²


PCC Coordination of Multidisciplinary Care

- Ensure T2D, CVD/HF, and CKD are not treated as separate problems
- Expertise of each specialty should be maximized
- Refer patients in a timely manner when appropriate
- Team includes:
 - Nephrologists
 - Cardiologists
 - Endocrinologists
 - Diabetes educators
 - Social workers
 - Community support
- Establish a clear chain of communication between PCCs and specialists
- Changes to monitoring or treatment plan should be made clear to the multidisciplinary team

1. Rangaswami J, et al. *Circulation*. 2020;142(17):e265-e268. 2. Kushner PR, et al. *Clin Diabetes*. 2022;40(4):401-412.

Kushner PR, et al. *Clin Diabetes*. 2022;40(4):401-412.

Multidisciplinary care for patients with cardio-renal-metabolic disease

